MODIS land team

use of IKONOS data

High Spatial Resolution Commercial Imagery Workshop March 19 - 21, 2001 Greenbelt, Maryland

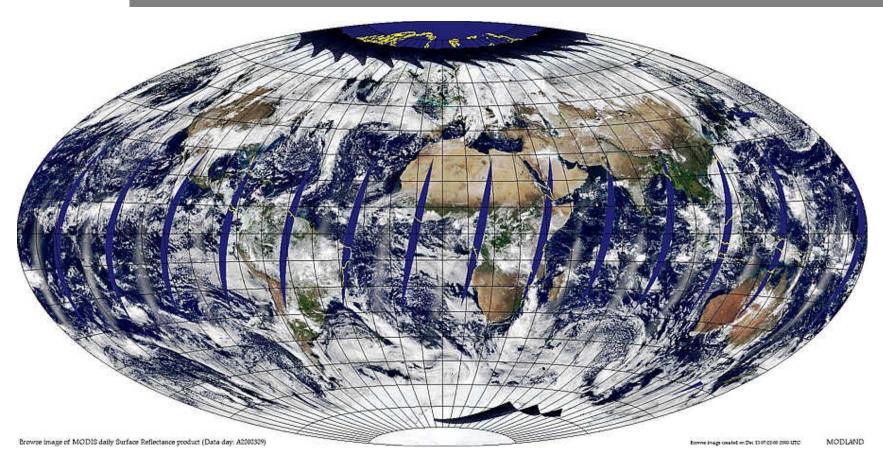
Jeff Morisette, SSAI, Code 923 NASA's GSFC
Jeff Privette, Code 923 NASA's GSFC
Chris Justice, MODIS Land Team Leader, UMd Geography
and the MODIS Land Team

jeff.morisette@gsfc.nasa.gov

Outline

- Overview of MODIS Land team validation activity
- The EOS Land Validation Core Sites
- Early results using IKONOS data

SAFARI 2000 & others



MODerate Resolution Imaging Spectroradiometer (MODIS) on board Terra launched 12/19/99

MODIS: near global coverage daily

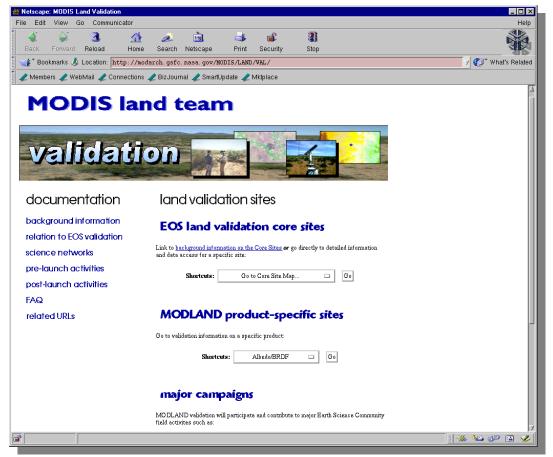
Atmospherically corrected land surface reflectance, 11/05/00 http://edcdaac.usgs.gov/modis/dataprod.html

MODIS Land Products*/NASA Earth Science Enterprise Research Themes

- Energy Balance Product Suite
 - Surface Reflectance
 - Land Surface Temperature
 - BRDF/Albedo
 - Snow Cover
- Vegetation Parameters Suite
 - Vegetation Indices
 - LAI/FPAR
 - NPP/PSN
- Land Cover Land Use Suite
 - Land Cover
 - Vegetation Continuous Fields
 - Vegetation Cover Change
 - Fire and Burned Area

Global Water Cycle and Energy Balance

Biology and Biogeochemistry of Ecosystems and the Global Carbon Cycle


Land Cover and Land Use Change

Atmospheric Chemistry and Aerosols

Applications
Education
Assessments

Validation:

"the process of assessing by independent means the quality of the data products derived from the system outputs"

- CEOS

MODLAND validation home page

http://modarch.gsfc.nasa.gov/MODIS/LAND/VAL

Morisette, Privette, & Justice

Why we need to validate MODIS land products

- Good science and resource management require understanding of product accuracy/uncertainty
- Explicit statements of uncertainty fosters an informed user community and improved use of data
- International environmental protocols and agreements imply findings will be independently evaluated and possibly challenged
- As more, and similar, global products are produced by CEOS members, inter-use will require characterization of each product's uncertainty

MODLAND Validation general operating principles

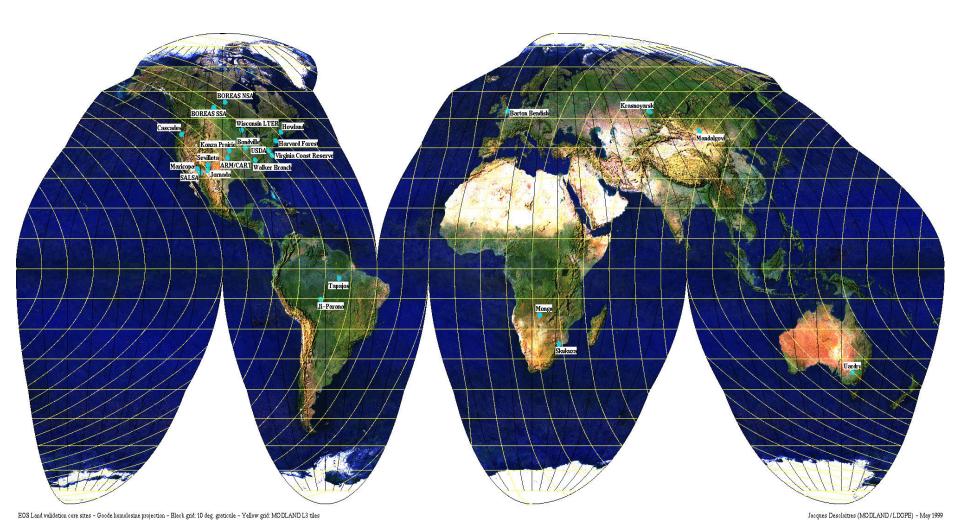
- the ultimate objective is to characterize products' uncertainty
- utilize independent data with relatively high accuracy and global consistency
- recognize limited resources for both data collection and analysis
- capitalize on the concept that imagery and field data sets can often be used to validate more than one product

Implications of operating principles

- Partnerships with
 - other field programs (e.g., LTERs)
 - science networks (e.g. AERONET, Fluxnet, & SDP)
 - international research efforts (LBA, SAFARI 2000)
 - International planning (CEOS working group on Calibration and Validation)
- Development of a set of core validation sites
 - globally consistent data sets
 - provide a foundation for a network that can grow toward global representation.
- Serve a wide range of investigators interested in landscape characterization

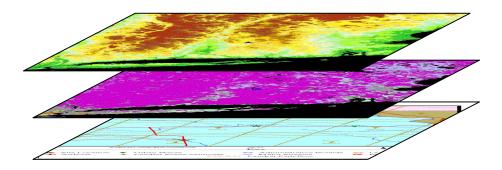
Three main components for each product

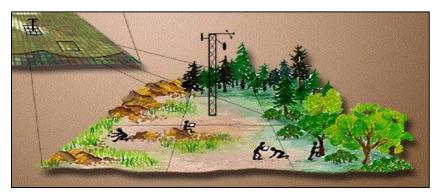
- Instruments and imagery needed for reference data
- Sites where these data will be collected
- Protocol for collecting data and conducting correlative analysis
 - instruments are generally product specific
 - imagery needs are consistent across products



Why MODLAND uses IKONOS data for validation

- High spatial resolution can help associate field measurements to other satellite data (ETM+ → MODIS)
- High geometric accuracy
- Available globally and globally consistent




EOS Land Validation Core Sites

EOS Land Validation Core Sites

Field data graphic courtesy of the BigFoot program

Satellite imagery

MODIS Subsets (EDC DAAC)

ETM+ (EDC DAAC)

ASTER data (EDC DAAC)

MISR Local Mode (Langley DAAC)

SeaWiFS Subsets (GSFC)

IKONOS (SDP/GLCF)

"GeoCover '90s TM (SDP)

EO-1

Ancillary layers and background information such as existing

- elevation
- land cover
- reference layer

available through UMd ESIP - GLCF

Field and airborne data: archive and access through ORNL DAAC's "Mercury System"

AERONET and FLUXNET data

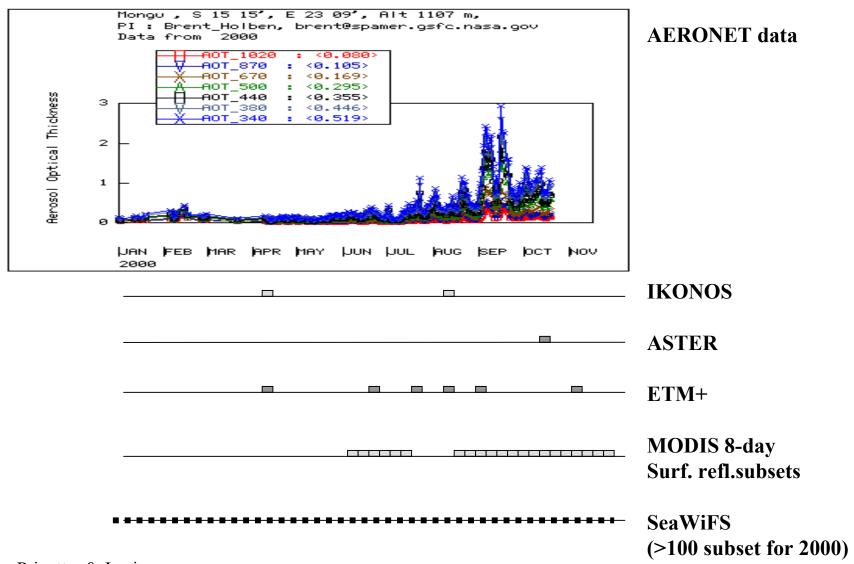
Black: available for all Core Sites Blue: available for some Core Sites,

Green: not currently available


Spectral bands for imagery utilized by **MODLAND** validation

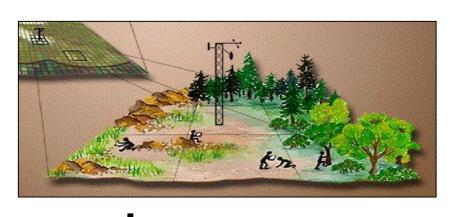
AVIRIS

(224 bands between 400 to 2500)

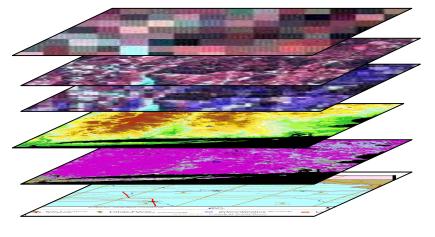

MAS/MASTER

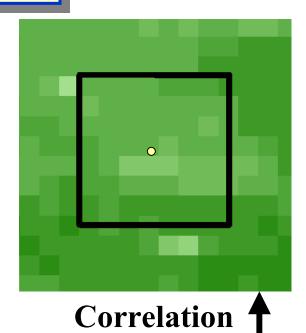
(25 channels between 400 and 2500)

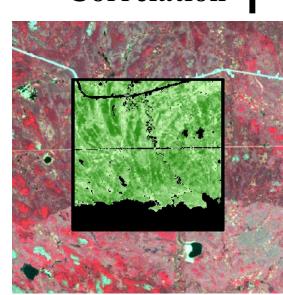
Acquisition frequency: example from MONGU Core Site


Core Site data summary

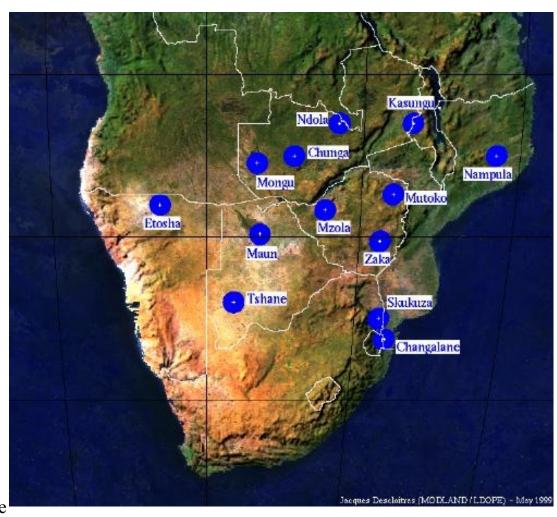
	ARM/CART	Barton Bendish	Bondville,IL	BOREAS, NSA	BERMS	CascadesLTER	Harvard Forest	Howland	Ji-Parana	Jornada LTER	Konza Prarie	Krasnoyarsk	Mandolgobi	Maricopa Ag.	Mongu	SALSA	Sevilleta LTER	Skukuza	Tapajos	Uardry	USDA ARS	VCR	Walker Branch	Wisc.Park Falls
MODIS Subsets																								
SeaWiFS subsets																								
Ancillary report (CRESS)																								
Ancillary data (GLCF)																								
ETM+ (with # of acquisitions)			7	3			5			4	5	2	1		7		2		5		5			5
Ikonos		1-D	EM	2		1	1	1		2	2	1			2		4				2			
Airborne (MQUALs or ER-2, both)																					AT			
Global Land Cover Test Sites																								
GeoCover: 1990 TM data																								
Aeronet CIMEL (planned)																								
EO-1 coverage - planned																								
ASTER & MISR local mode - planned											1													

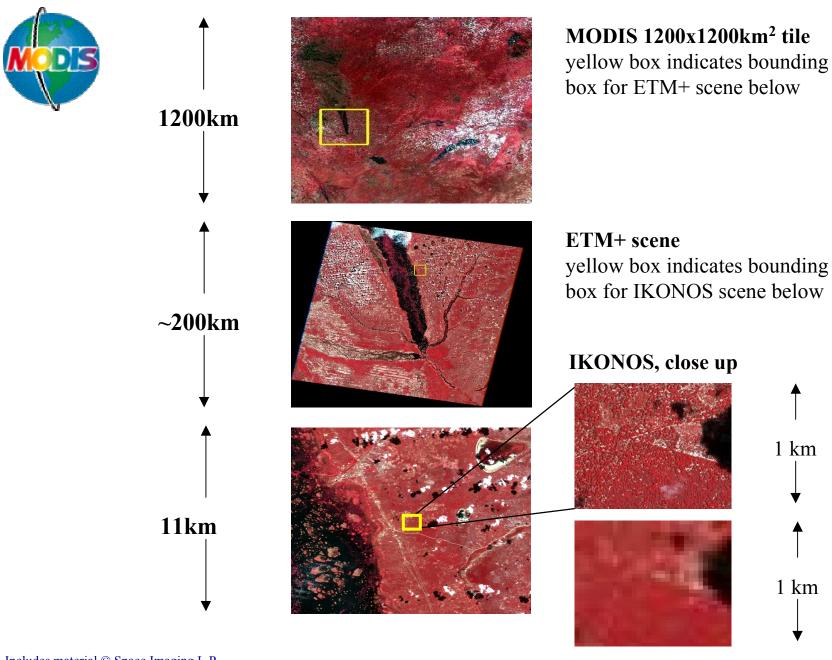

Morisette, Privette, & Justice


The scaling issue



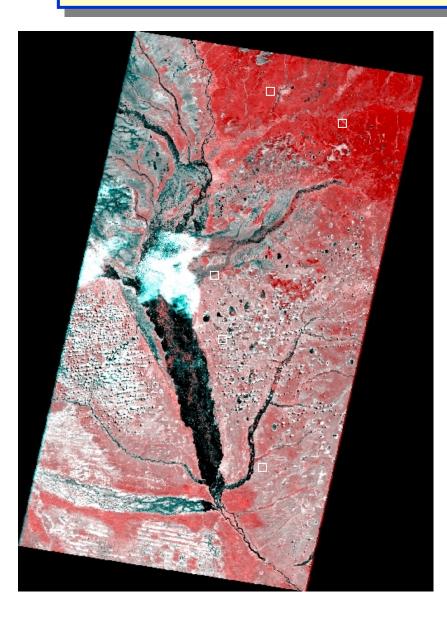
Aggregation





Morisette, Privette, & Justice Some graphics courtesy of BigFoot project

Southern Africa Fire and Atmosphere Research Initiative: SAFARI 2000

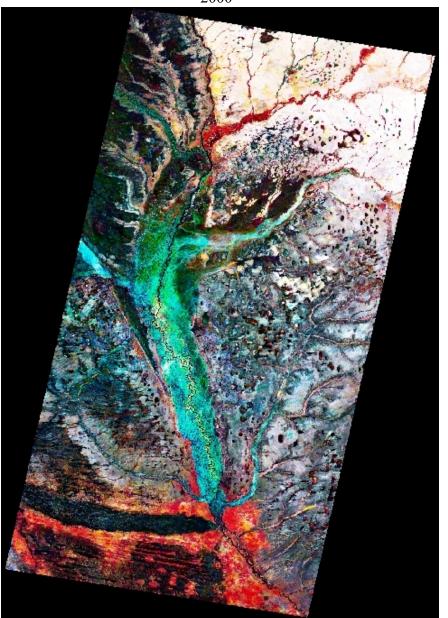


Includes material © Space Imaging L.P. Morisette, Privette, & Justice

ETM+, close up

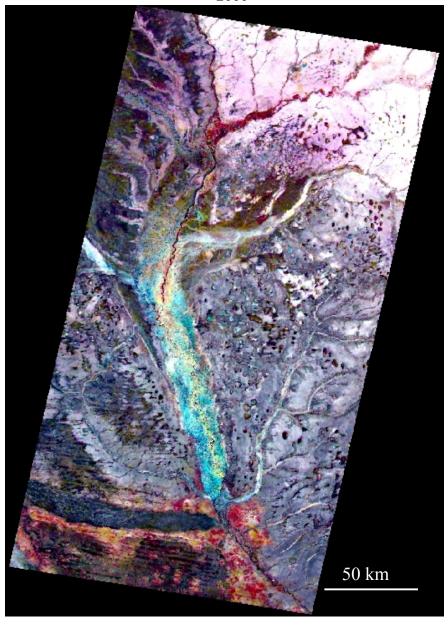
IKONOS use in Western Zambia to Map Tree Cover

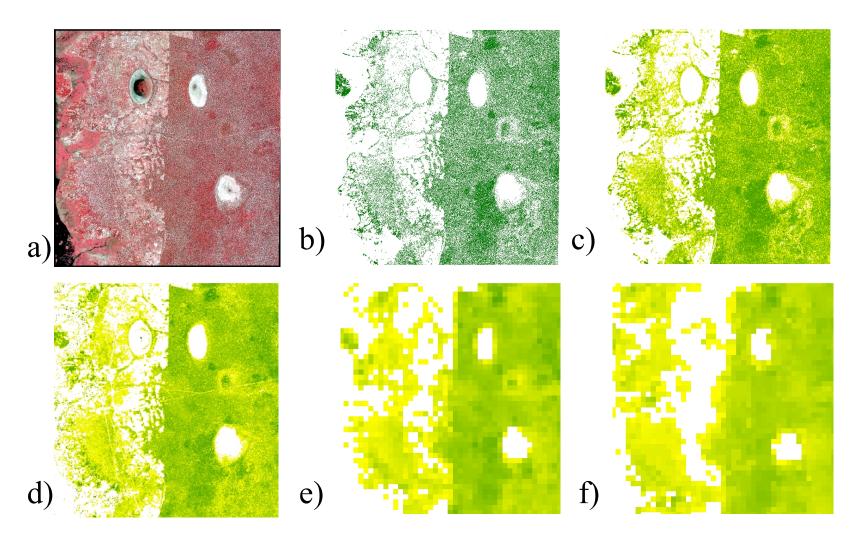
Using IKONOS to "train" ETM+ data


IKONOS acquisitions shown as white squares

False Color composite for Zambia Landsat WRS 175/070-071, April 4, 2000

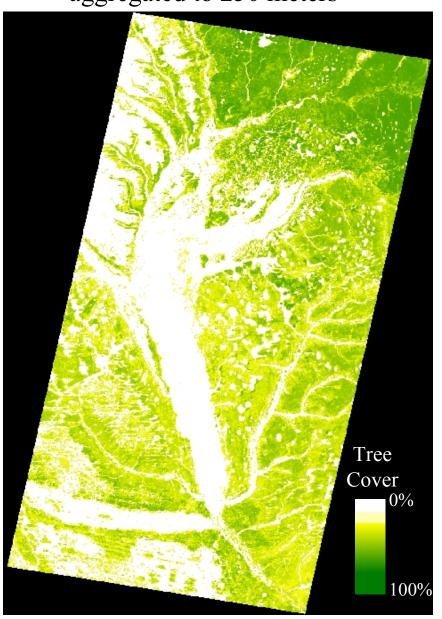
from Hansen, Umd With Townshend and Defries, UMd


ETM+ NDVI composite,

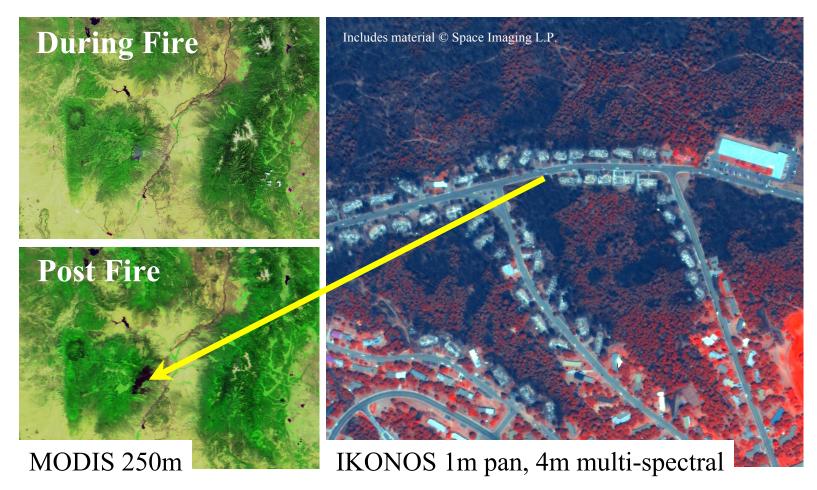

red=April 4, green=June 29, blue=August 16, 2000

MODIS NDVI composite,

red=May 20, green=June 25, blue=July 27 2000

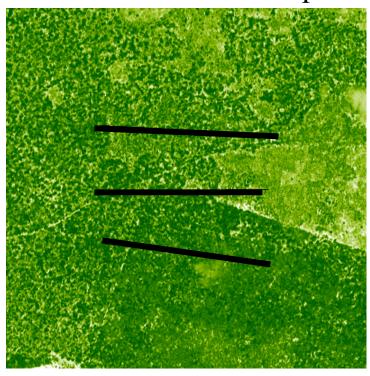


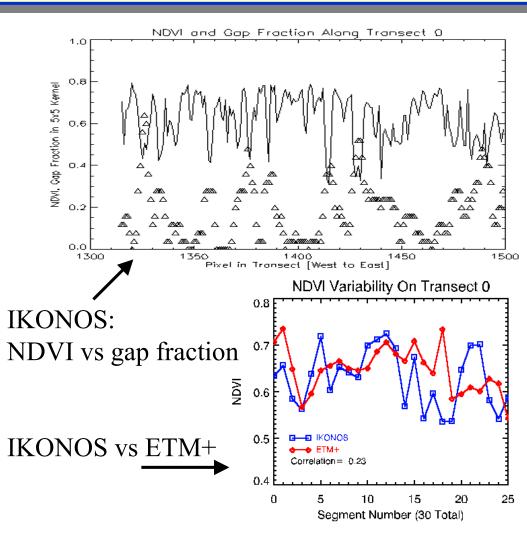

- 4 m IKONOS 4-3-2 combination, 11km by 11km,
- crown cover interpretation,
- aggregated continuous crown cover training at 30 meter resolution,
- ETM canopy cover derived from IKONOS training,
- result aggregated to 250 meter for MODIS validation use,
- MODIS predicted crown cover at 250 meter resolution


ETM+ crown cover aggregated to 250 meters

MODIS 250 meter predicted tree cover using training taken from TM product

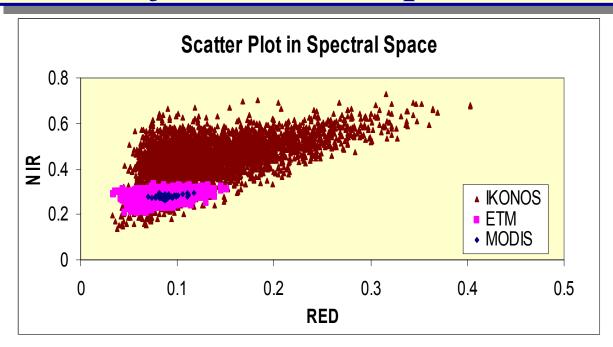
Cerro Grande (Los Alamos) Fire: MODIS Land Cover Change

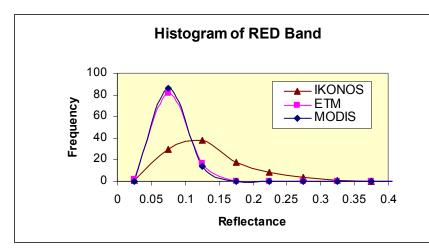


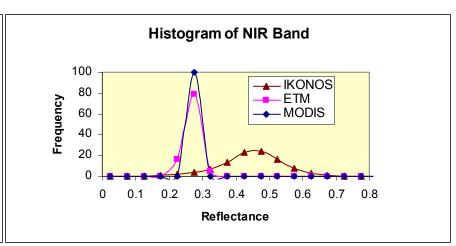

IKONOS provides an important new perspective on land cover change to examine scaling and mixed pixel effects.

Transect Variability Across Forest Border: NDVI and Gaps

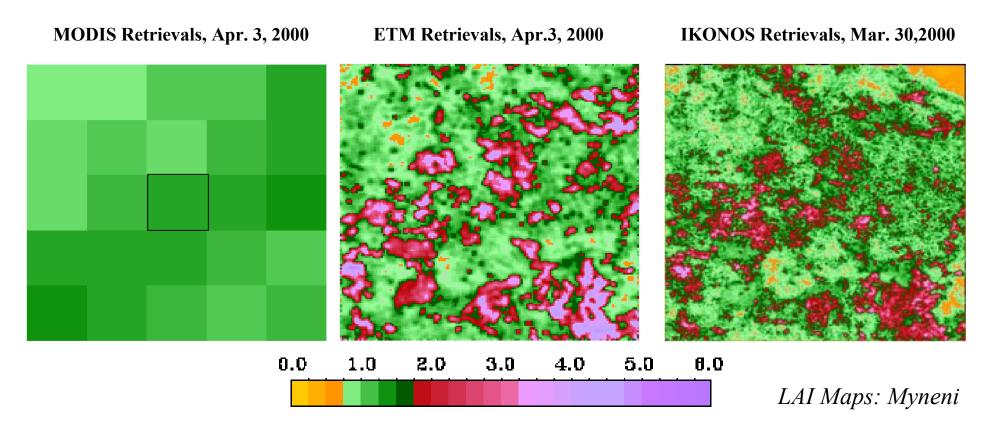
IKONOS NDVI 4 m/pixel



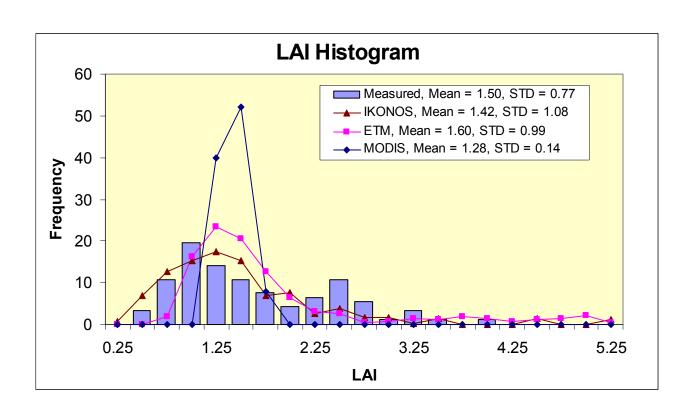



Data from Privette's: Southern Africa Validation of EOS Products

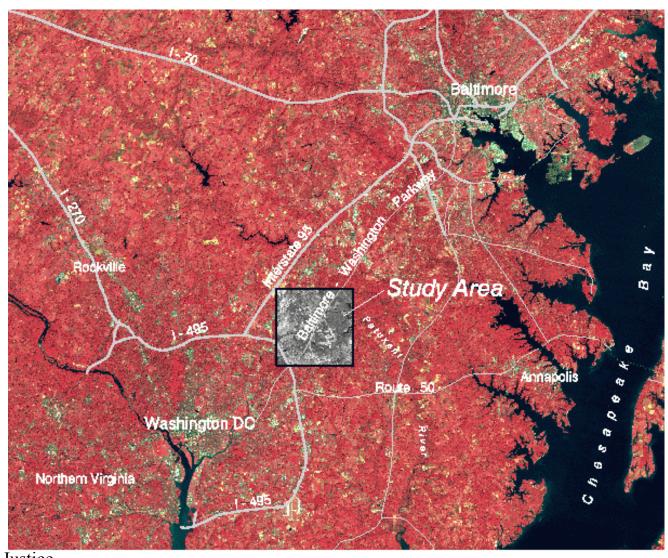
Reflectance Comparisons



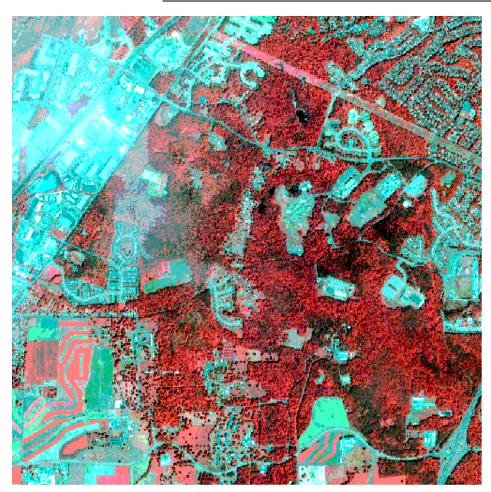
From Myneni et al, BU

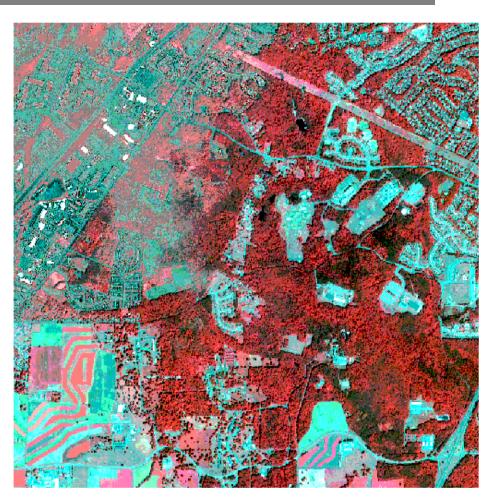

Leaf Area Index/FPAR

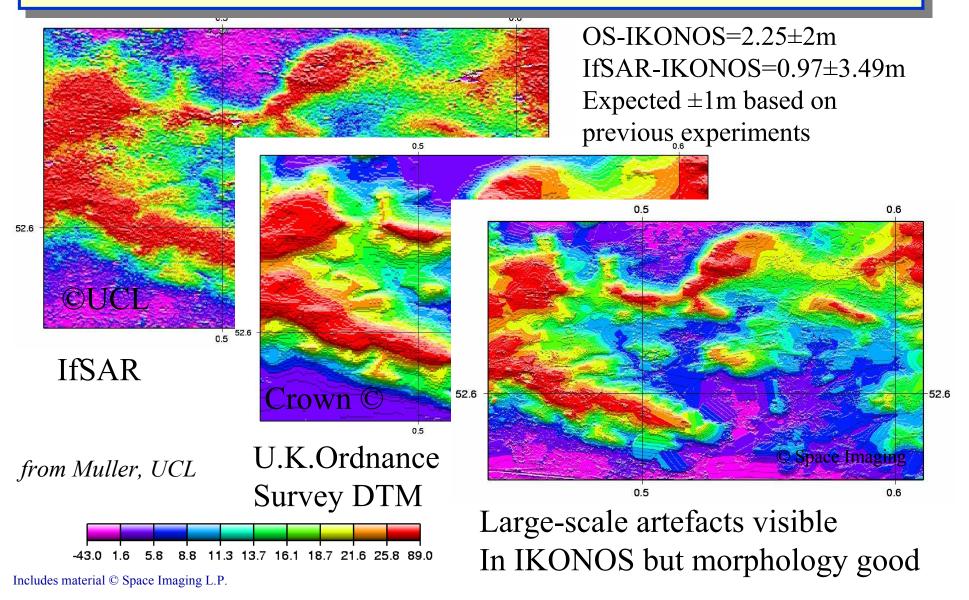
BU/Myneni et al., LAI Map of a 5 KM Area, from SAFARI 2000



Histogram of Retrieved LAI




USDA BARC: EOS Land Validation Core Site


IKONOS imagery of USDA/BARC, June 3, 2000

from Liang, UMd Morisette, Privette, & Justice

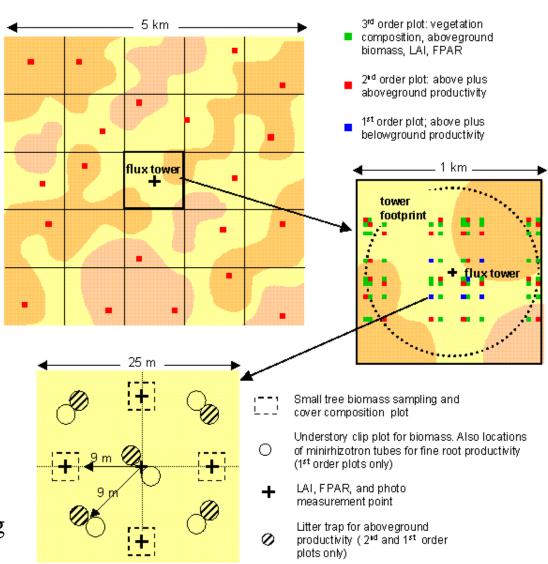
Stereo IKONOS for landscape 3D modelling for BRDF simulation: DEM intercomparison at 30m

Stereo IKONOS for landscape 3D modelling for BRDF simulation

- 3D landscape models will be used to simulate a BRDF at aircraft and satellite resolutions given field measurements of BRDF at the canopy level.
- 3D landscape models combined with orthorectified provide a much less ambiguous way to classify land cover types.
- 3D landscape models can be used to measure the Aerodynamic Surface Roughness Length

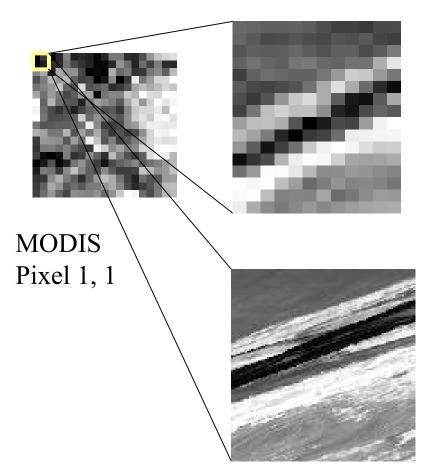
• Currently:

- "the most important intermediate step between field data and Landsat."
- using IKONOS to georeference the ETM+.


Plans:

 Investigate how adding IKONOS into the data analysis improves what can be done using ETM+ alone

Field-Based Sampling Design

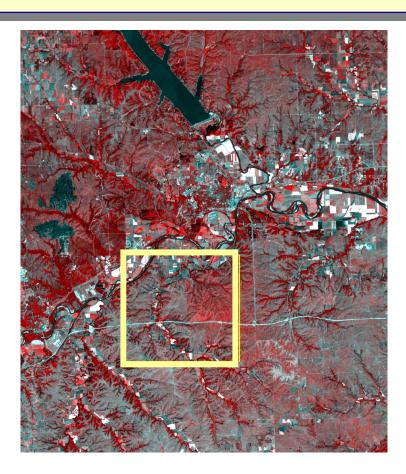

IKONOS to help with sub-ETM- scale sampling

For forest plots, a prism sweep for stem biomass will be made from the plot center

Comparison at Multiple-scales

ETM+ 14, 16 n=224

Considering all three as variable and subject to errors, consider MODIS pixel relative to the *distribution* from the higher resolution data


IKONOS 116, 120 n=13,920

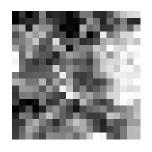
IKONOS boundary on MODIS 500m and ETM+

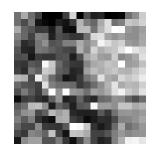
MODIS 8-day composite


ETM+, Sept. 11

IKONOS, Sept. 15

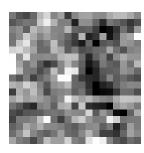
Aeronet sun photometer (Meyer) Vermote et al.'s Six S code (for ETM+ and IKONOS)


IKONOS vs ETM+: Normalized Difference Vegetation index (NDVI)



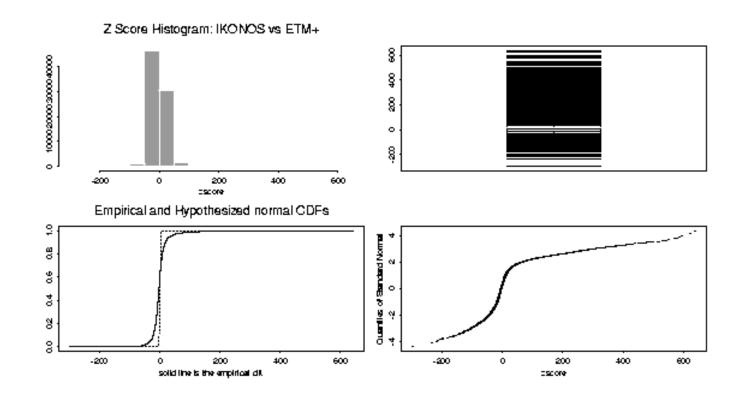
Correlation = .5639

Normalized differences: method to include variability



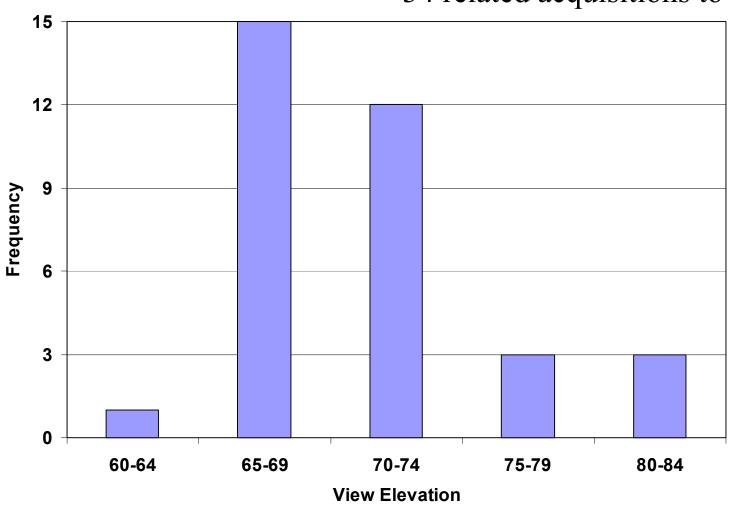
ETM+ – IKONOS(average)

Std. Dev (IKONOS ave.)


= "z score"

Z score analysis: ETM+ vs IKONOS

IKONOS vs ETM


		20	00																					2	00	1				
Campaign name	relevant products	j	1	f		m	a	а	r	n	j		j		a		s	c		n	ı	d		j		f	Ш	m		аШ
BigFoot-Bondville, USA *	Land Cov., LAI/FPAR, NPP									Ш	П		Ш	Ш	Ш			П											П	П
BigFoot-BOREAS NSA, Canada *	Land Cov., LAI/FPAR, NPP	П	П	П	П	П		П		Ш	П	П	П	П	П	П	П		П	П	П	П	П	П	П	П	П	П	П	Ш
BigFoot-Harvard, USA *	Land Cov., LAI/FPAR, NPP		П	П	П	П	П	П		Ш	П	П	П	П	\prod	Π	П				П	П	П	П	П	\prod		П	\prod	Ш
BigFoot-Konza, USA *	Land Cov., LAI/FPAR, NPP		П	\prod	П	П	П	П		Ш	П	\prod	П	П	П	П	\prod				П	П	П	П	П	\prod		П	\prod	Ш
Deering-Krasnoyarsk, Russia *	LA <i>V</i> FPAR			\prod		П					П			\prod								П	П	\prod	П	\prod		П	\prod	\prod
Deering-Krasnoyarsk, Russia *	LAVFPAR		П	П	П	П								П	П							П	П	П				П	\prod	\coprod
Gow er-ParkFalls, USA *	LAVFPAR, NPP		П	\prod	П	П		П		\prod	\prod	\prod		\prod	\prod	\prod	\prod					П	\prod	П	П	\prod		П	\prod	\prod
Hall-New Hampshire, USA *	Snow & Sea Ice		П	\prod	П						П			\prod	П							П						П	\prod	Ш
Hao-Western US fires	Fire, Veg. Cov. Conversion		П	\prod	Π	П					П		П	П	П						П	П	П	\prod		\prod		П	\prod	\prod
Honda/GLI-Eugene, USA	Surf. Refl., VI, Albedo/BRDF		П	Π	П	П		П		П	\prod	П		П	П		П		П		П	П	П	П	П	\prod		П	\prod	Ш
Honda/GLI-Jornada, USA *	Surf. Refl., VI, Albedo/BRDF		П	П	П	П								П	П							П	П	П	П	\prod		П	\prod	Ш
Honda/GLI-Konza Prairie, USA *	Surf. Refl., VI, Albedo/BRDF	П	П	П	П	П	П	Π		П		П	П	П	П		П		П		П	П	П	П	П	П	П	П	Π	Ш
Honda/GLI-Mandalgobi, Mongolia *	Surf. Refl., VI, Albedo/BRDF	П	П	Π	П	П	П	Π		П	Π	Π	П		П		П	П	П	П	П	П	П	Π	Π	Π	П	П	Π	Ш
Honda/GLI-Missoula, USA	Surf. Refl., VI, Albedo/BRDF	П	П	Π	П	П	П	Π	П	П	Π		П	П	Π	П	П	П	П	П	П	П	П	Π	Π	Π	П	П	Π	Ш
Honda/GLI-SALSA, USA *	Surf. Refl., VI, Albedo/BRDF	П	П	Π	П	Π	П	Π	П		П	П	П	П	Π	П	П	П	П	П	П	П	П	Π	П	Π	П	П	Π	Ш
Honda/GLI-Victoria, Canada	Surf. Refl., VI, Albedo/BRDF		П	П	П	П					П			П	П							П	П	П	П	\prod		П	\prod	Ш
Hook-Amburla	LST		П																			П								
Hook-Lake Tahoe *	LST		П		П	П					П			П	П	П						П		П	П		П	П	П	П
Hook-Thangoo	LST		Ш		П			П														П		П					П	
Hook-Uardry *	LST		П		П	П					Ш			Ш	Ш	П						П		П				Ш	П	
Huete: MQUALS-Brasilia, Brazil	Surf. Refl., VI	П	П	Π	П	П		П	П	П	Π	П	П	П	Π		П	П	П	П	П	П	П	Π	Π	Π	П	П	Π	Ш
Huete: MQUALS-Jornada, USA *	Surf. Refl., VI			\prod	I	\prod					П	\prod		\prod	\prod							\prod	\prod	\prod		\prod		$ lap{1}$	$ lap{1}$	
Huete: MQUALS-Tapajos, Brazil *	Surf. Refl., VI				\prod	П					П				П						П	П	П	П		П		П	\prod	\prod
Huete: MQUALS-Walnut Gultch, USA *	Surf. Refl., VI																											\prod	\prod	\coprod

Liang-USDA Beltsville, USA *	Surf. Refl., Albedo														П														
Li-Southern Ocean cruise	Snow & Sea Ice	П	П		П	Ш	П	П	П	Π	П	П	П	П	П	Π	П	П	П	П	Π	П	П	П			П	Ш	Π
Muller-Barton Bendish, UK *	BRDF/Albedo and LAI	П	Π	П	П	П	Π		П	Π		П	П	П	П	Π	I	П	П	П	Π	П	П	П	П	П	П	Ш	П
Myneni & Privette-Maun, Botswana	LAVFPAR, Land Cov.	П	Π	П	П		Π	Π	П	Π	Ш	П	П	П	П	Π	Π	П	П	П	Π	П	П	П	П	П	П	Ш	Π
	Surf. Reflect, VI, LAI/FPAR,	П	П			П	Π	П	П	П	Ш	П	П										Ш					П	
	BRDF/Albedo,		П				Ш	Ш		Ш		Ш	Ш										Ш						
Myneni & Privette-Mongu, Zambia *	Surf. Temp., Fire, NPP	Щ	Щ	Щ	Ц	Ш	Щ	4	Щ	Щ	Щ	Щ	Щ		#	Щ	Щ	Ш	Щ	4	Щ	Ш	Щ	Щ	4	Щ	Щ	Щ	
Myneni & Privette-Okwa, Botswana	LAI/FPAR, Land Cov.	Щ	Щ	Щ	Щ		Щ	Щ	Щ	Щ	Щ	Щ	Щ	Ш	Щ	Щ	Щ	Щ	Щ	Щ	Щ	Ш	Щ	Щ	Щ	Щ	Щ	Щ	Ц
Myneni & Privette-Tshane, Botswana	LAI/FPAR, Land Cov.	Ш	Ш	Ш	Ш		Щ	Ц	Ш	Ш	Ш	Ш	Щ	Ш	Ш	Щ	Ш	Ш	Ш	Щ	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	
Myneni-Harvard, USA *	LAI/FPAR	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш		Ш	Ш	Ш	Ш	Ш	Ш	Щ	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	
Myneni-Kejiimkujik, Canada	LAI/FPAR	Ш	Ш			Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш		Ш	Ш	Ш	Ш		Ш	Ш		Ш	Ш	Ш	Ш	Ш	Ш	
Myneni-Pandamatanga, Botswana	LAI/FPAR, Land Cov.		П			П	П			П		\prod	П		\prod	П							П	П			$ lab{II}$	Ш	
Myneni-Ruokolahti, Finland	LAI/FPAR	П	П	П	П	П	Π	Π	П	Π		П	П	П	П	Π	Π	Ш	П	П	Π	П	П	Π	П	П	П	Ш	Π
Nolin-Fort Peck, SURFRAD site	Snow & Sea Ice, Albedo	П	П	П	П	П	П	П	П	П	П	П	П	П	П	П	П	П										П	
Nolin-Greenland ice sheet	Snow & Sea Ice, Albedo		П				П																						
Nolin-Turquoise Lake, Colorado	Snow & Sea Ice, Albedo	Ш				\prod				\prod	Ш				\prod		\prod	Ш		\prod			П				\prod	Ш	\prod
Nolin-Yampa Valley, Colorado	Snow & Sea Ice, Albedo	Ш	Ш		Ш	Ш		Ш	Ш	Ш	Ш	Ш	Ш		Ш	Ш	Ш	Ш		Ш	Ш			Ш	Ш		Ш	Ш	
	LAI/FPAR, BRDF/Albedo,											П																Ш	
Privette-Mongu, Zambia *	Surf. Temp., Fire, NPP, VI	Щ	Щ	Щ	Щ	Щ	Щ	Щ	Щ	Щ	Щ	Щ	Щ		Щ	Ш	Щ	Ш			Ш		Ш	Щ	Ш	Ш	Щ	Щ	
D: # 01 1 0 4 4	LAI/FPAR, BRDF/Albedo,						Ш			Ш		П	Ш										Ш					Ш	
Privette-Skukuza, S.A. *	Surf. Temp., Fire, NPP, VI	Щ	₩	Н	Н	Н	╙	#	Щ	₩	Ш	₩	#		₩	₩	Ш				Н					Ш	#	##	H
SAFARI 2000-dry season, Southern Africa *	Fire, VCC		Ш		Ш		Ш			Ш		Ш	Ш		П	П	Ш	ı					Ш	Ш				Ш	Ш
Shi-King's River, Sierra Nevada, CA, USA	Snow & Sea Ice	Н	Н	Н	$^{+}$	$^{+}$	₩	╫	H	₩	Н	₩	₩	Н	₩				+	╫	₩	Н	₩	₩	₩	Н	#	₩	H
Townshend- Vegetation Cover Conv., Africa		Н	₩	Н	\mathbb{H}		₩	$^{+}$	Н	₩	Н	₩	₩	Н	₩	₩	₩	Н	+	₩	₩	Н	$^{+}$	₩	$^{+}$	Н	#	₩	+
Townshend-Appalachian Transect,	Land Cov., Veg. Cov. Conversion	Н	₩	Н	Н	4	₩	₩	Н	₩	Н		₩	Н	₩	₩	₩	Н	+	╫	₩	Н	₩	₩	₩	Н	Н	₩	Н
Eastern USA *	Veg. Continuous fields		Ш		Ш		Ш			Ш			Ш		Ш	Ш	Ш						Ш	Ш				Ш	Ш
Wan-Bridgeport, CA, USA	LST	Н	H	Н	Н	H	۳	╫	Н	₩	Н		H	Н	₩	H	Ħ	Н	$^{+}$	₩	H	Н	₩	Ħ	H	Н	$^{+}$	₩	Н
Wan-Grassland, Chico, CA, USA	LST	H	H	H	H	\forall	Ħ	+	H	$\dagger \dagger$	Н	₩	$\dagger \blacksquare$	H	#	Ħ	\dagger	Н	+	††	H	H	\forall	H	H	Н	#	₩	\dagger
Wan-LakeTiticaca, Bolivia	LST	₩	H	Н	H	$^{\rm H}$	$^{\dag }$	$^{+}$	₩			₩	╫	H	₩	H	††	Н	H	†	₩	Н	₩	H	H	Н	#	₩	\dagger
Wan-MonoLake	LST	₩	+	H	\mathbb{H}	$\forall t$		╫	₩			₩	╫	H	₩	₩	+	HH	╫	#	+	H	╫	$^{+}$	+	H	#	₩	H
VVAIT-IVIDITOLANG	LUI	Ш	Ш	Ш	Ш	Ш		Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	\perp

View elevation angle distribution

34 related acquisitions to-date

Conclusions

- IKONOS is proving useful as a bridging between field and ETM+ (ASTER) imagery
- Globally consistent data is useful for globally representative validation (i.e. Core Site data suite)
- Solid coordination with Stennis Scientific Data Purchase and Space Imaging
- Infrastructure of MODLAND Validation has helped maximize use of IKONOS scenes
- Radiometric issues need to be resolved for validation activities that utilize radiometric information
- Related publication are forthcoming: MODLAND special issue of Remote Sensing of Environment, SI "Imaging Notes" article, and potential special issue on Land Product Validation

Jeff Morisette 301-614-6676

jeff.morisette@gsfc.nasa.gov